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What Can We Learn from Nonminimally Coupled
Scalar Field Cosmology?
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A novel exploration of nonminimally coupled scalar field cosmology is proposed
in the framework of spatially flat Friedmann–Robertson–Walker spaces for
arbitrary scalar field potentials V(c) and values of the nonminimal coupling
constant j. This approach is self-consistent in the sense that the equation of state
of the scalar field is not prescribed a priori, but is rather deduced together with
the solution of the field equations. The role of nonminimal coupling appears to
be essential. A dimensional reduction of the system of differential equations leads
to the result that chaos is absent in the dynamics of a spatially flat FRW universe
with a single scalar field. The topology of the phase space is studied and reveals
an unexpected involved structure: according to the form of the potential V(c)
and the value of the nonminimal coupling constant j, dynamically forbidden
regions may exist. Their boundaries play an important role in the topological
organization of the phase space of the dynamical system. New exact solutions
sharing a universal character are presented; one of them describes a nonsingular
universe that exhibits a graceful exit from, and entry into, inflation. This behavior
does not require the presence of the cosmological constant. The relevance of this
solution and of the topological structure of the phase space with respect to an
emergence of the universe from a primordial Minkowski vacuum, in an extended
semiclassical context, is shown.

1. INTRODUCTION

The starting point of this work is the formulation and implementation
of classical self-consistent cosmological histories driven by scalar fields in
the framework of Einstein’s theory of general relativity. Several reasons
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motivate interest in this problem; first, the necessity for a better understanding
of the essential role of classical scalar fields in cosmological inflation [1]
and quintessence when the fields couple nonminimally to the spacetime
curvature. This is a fundamental theoretical as well as experimental problem,
since present astrophysical observations [2] point with increasing confidence
to an acceleration of the cosmic expansion. The latter, deduced from the data
of high-redshift supernovae, is naturally modeled by scalar fields [3], and
their nonminimal coupling to the Ricci curvature plays an important role in
these models [4–6].

Second, scalar fields are present in most theories of high-energy physics;
examples are the Higgs boson of the standard model, the string dilaton,
the supersymmetric partners of spin-1/2 particles in supergravity, and the
geometrical scalar field of Kaluza–Klein theories. In addition, scalar fields
are expected to play a fundamental role in the physics of the early universe
and drive the cosmic expansion during the inflationary era. Inflation is the
only known causal mechanism which offers an explanation for the generation
of density perturbations on scales above the Hubble radius [7], which evolve
into the structures observed today (galaxies, clusters of galaxies, . . .). The
generalization to a curved spacetime of the flat-space equation of motion for
the scalar field (the Klein–Gordon equation) includes the possibility of an
explicit coupling term jRc between the scalar field c and the Ricci curvature
R of spacetime. There are many reasons to believe that a nonminimal (i.e.,
j Þ 0) coupling term is present. In addition to the generic Callan–Coleman–
Jackiw [8] argument leading to the improved energy-momentum tensor for
the classical scalar field (already in flat spacetime), it appears that nonminimal
coupling is generated by quantum corrections even if it is absent in the
classical action [9] or is required to renormalize the theory [10]. In semiclassi-
cal gravity, where the scalar field is fully quantized while gravity is classical,
it appears that conformal coupling j 5 1/6 is mandatory for the realisation
of a self-consistent cosmological scenario [11]. It has also been argued in
quantum field theory in curved spaces that a nonminimal coupling term is
to be expected whenever the spacetime curvature is large. This leads to the
“j-problem,” i.e., the problem of whether physics uniquely determines the
value of j. The answer to this question is generally affirmative: several
prescriptions for the coupling constant j exist and they differ according to
the theory of gravity and of the scalar field adopted [12].

In general relativity (which is adopted in the present work) and in all
metric theories of gravity in which the scalar field has a nongravitational
origin, arguments based on the Einstein equivalence principle select the
conformal value j 5 1/6 [13]. The minimal (j 5 0) coupling of the scalar
field instead leads to physical pathologies [13]. Nonminimal couplings of
the scalar field have been widely used in cosmology, and the available
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prescriptions have important consequences for the viability of inflationary
scenarios in which the nonminimal coupling constant j becomes an extra
parameter. The success or failure of inflation critically depends on the value
of the coupling constant j [14, 15, 12]; the classical example is chaotic
inflation with a quartic self-interaction and nonminimal coupling. For this
case, even the small shift j 5 0 → j . 1023 makes the inflationary solutions
fine-tuned, and therefore the scenario becomes unviable [15].

All these reasons led numerous authors to study scalar field cosmology
with nonminimal coupling in various contexts [16–20]. Its richness was
nevertheless not fully explored and several of its peculiarities were missed.
One reason is that the nonminimal coupling of the scalar field to the Ricci
curvature adds to the energy-momentum tensor of the scalar field extra terms
involving geometric quantities. A widespread attitude encountered in the
literature is to disentangle this (conserved) energy-momentum tensor by
including a (nonconserved) part of it in the geometric left-hand side of the
Einstein equations. The resulting “new” field equations are then expressed
by using the truncated remaining (nonconserved) energy-momentum tensor
coupled to a redefined effective gravitational “constant” Geff(t) 5 G(1 2
8pGjc2)21, which is time dependent. Geff can diverge due to a mathematically
questionable division by the factor (1 2 8pGjc2), which can vanish; if this
happens, Geff is interpreted as reflecting an effective “strong” gravitational
constant. The procedure introduces an artificial barrier cc 5 6(8pGj)21/2

for j . 0 and therefore a loss of generality, since solutions which cross the
barrier 6cc are missed. The richness of the possible cosmological solutions
associated with nonminimal coupling is therefore partially lost. On the con-
trary, we show how the Einstein equations, when considered in the presence
of the full (conserved) energy-momentum of the nonminimally coupled scalar
field, unveil these missing solutions and promote them to an unexpected and
important cosmological role.

Another restrictive procedure that screens the dynamical possibilities
and subtleties of the nonminimal scalar cosmological histories is the ad hoc
prescription of an equation of state associated with the scalar field. Our
approach, on the contrary, consists in deriving self-consistently the equation
of state together with the solution of the coupled Einstein–Klein–Gordon
equations, rather than to prescribe it a priori; hence, these solutions are called
self-consistent.

A further reason motivating interest in nonminimal scalar field cosmol-
ogy finds its roots in previous studies of self-consistent cosmological mecha-
nisms in semiclassical gravity [11]. The promotion of the scalar field to a
quantum nature opens unexpected avenues of approach to several cosmologi-
cal problems, among which is the possible realization of nonsingular self-
consistent cosmologies. The latter are possible thanks to the semiclassical
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mechanism of particle production induced by the expansion (or contraction)
of spacetime and its feedback reaction on the rate of cosmic expansion. In
the case of a scalar matter field, the Einstein semiclassical equations reduce,
in the cosmological context, to a nonlinear dynamical interplay between two
fields: the massive, quantum, scalar matter field, and the classical scale factor
of the universe, which is the only gravitational degree of freedom compatible
with the requirements of spatial homogeneity and isotropy of the universe.
On one hand, this nonlinear interplay drives the cosmic expansion, and on
the other hand, it regulates the production of quanta of the scalar field. It
was shown [11] that the quantum production rate of massive particles induced
by the cosmic expansion may lead to a feedback response which is precisely
the one required to sustain the expansion. This self-consistent cooperative
solution of the semiclassical Einstein equations is the de Sitter expanding
solution. For this space, the dilution of the cosmic scalar fluid due to the
expansion is exactly balanced by the quantum production of scalar field
particles at all times. This was the first inflationary scenario proposed indepen-
dently of particle physics consideration. The crucial role of the nonminimal
coupling of the scalar matter field to the spacetime curvature is evident in
the framework of this mechanism, as its realization necessarily requires
conformal coupling (j 5 1/6).

Although very appealing, this semiclassical approach is not free of
ambiguities and controversies. First, there is the renormalization procedure
unavoidably attached to the quantum treatment of the scalar matter field.
This procedure, as well as its physical implications, is not uniquely prescribed
in the time-dependent curved spacetime background [22]. In addition, the
formulation of initial conditions has its conceptual as well as mathematical
difficulties; in fact, these conditions are simultaneously related to classical
geometrical constraints and to the choice of the corresponding quantum
vacuum state of the matter field in the Heisenberg picture. The latter intro-
duces, for example, the particle number, which is neither a “natural” Einstein
equations variable nor a well-defined concept in a curved dynamical space-
time. Moreover, the semiclassical self-consistent cooperative solution is not
a complete, realistic, cosmological history since it describes eternal expansion
at a constant rate without spontaneous exit from inflation into a realistic
expansion law (a problem common to many inflationary scenarios).

Hence the following question: is it possible to keep the self-consistent
cooperative paradigmatic approach to cosmology without the quantum bewil-
derments? More precisely, is it possible to rephrase classically the underlying
mechanism in the framework of Einstein’s classical equations with a classical
scalar field as the source of gravity?

That this question may have a positive answer follows from the general
structure of the mechanism driving the feedback self-consistent dynamical
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behavior, which is independent of the quantum or classical character of the
matter field: a conservative transfer of energy, regulated by the Einstein
equations, between the time-dependent spacetime geometry [the scale factor
a(t)] and the scalar matter field c(t). In semiclassical theory, this mechanism is
achieved by the interaction of these two (classical and quantum, respectively)
fields, due, for example, to the mass of the matter field. Nothing forbids a
priori the purely classical implementation of this conservative energy transfer
mechanism, which appears indeed to be contained in the Einstein equations
in the cosmological context. The quantum nature of the matter scalar field
does not seem to be an essential ingredient; it only gives rise to a particular
implementation of the general mechanism, subject to specific constraints
imposed by quantum field theory in curved spacetimes.

The structure of the Einstein and Klein–Gordon equations relating the
spacetime geometry with the matter field energy-momentum are formally the
same in both the classical and the semiclassical contexts. Only, quantum
mean values and certain formal quantum properties of the matter scalar field
(as well as their feedback geometric responses) are replaced by their classical
counterparts. In particular, the classical formulation only involves the energy
density of the matter field and does not require the particle number variable,
which is absent in the general relativistic formulation. The classical analog
of particle production would therefore be the production of energy density
of the matter field, which has to be driven (similarly to the semiclassical
picture) by the self-consistently generated negative pressure associated with
purely classical mechanisms. The search for such a classical cosmological
scenario obviously requires a full understanding of self-consistent nonminimal
scalar cosmology, and motivates the present investigation. As a bonus, it
appears that the classical cosmological framework opens the way to a wider
class of exact self-consistent classical solutions. Contrary to the semiclassical
framework, the classical self-consistent mechanism lends itself to the consid-
eration of arbitrary potentials (incorporating or not a cosmological constant)
as well as arbitrary nonminimal couplings. This leads to a variety of exact
solutions, including some that exhibit a spontaneous graceful exit from, and
entry into, inflation. These solutions are ironically among those (mentioned
above) usually missed in the literature. In addition, the classical analog of
the semiclassical self-consistent scenario is shown and testifies to the impor-
tance of nonminimal coupling; the latter will appear to be “renormalized”
according to whether the same self-consistent mechanism is realized classi-
cally or semiclassically.

These considerations are set in the framework of a general dynamical
system approach to nonminimally coupled scalar field cosmology (see refs.
21 and 23 for other treatments in particular cases). The approach is very
general, being valid for arbitrary scalar field potentials as well as arbitrary
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values of the nonminimal coupling constant j; the only restriction is the
consideration of spatially flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) cosmologies.

A dimensional reduction of the differential equations governing the
evolution of the system to two first-order equations leads to the result that
the dynamics of a spatially flat FLRW universe fueled by a single scalar
field does not admit chaos. This closes a long-standing debate [24, 25] about
the possibility of chaos in the dynamics of spatially flat, homogeneous, and
isotropic universes.

Further, the phase space of the self-consistent dynamical solutions has
an an unexpected topological structure. The more restricted case of a massive
scalar field potential with a quartic self-interaction and a cosmological con-
stant conformally coupled to gravity is explored in a second paper [26] on
exact integrability conditions of the coupled Einstein–Klein–Gordon
equations.

The plan of the paper is as follows: in Section 2 we present the field
equations, the conserved stress-energy tensor of the scalar field, and the
dimensional reduction to a two-dimensional dynamical system, which leads
to the absence of chaos. In Section 3 the topology of the phase space is
investigated, together with the regions unaccessible to the orbits of the solu-
tions and their boundary. The fixed points of the reduced dynamical system
are investigated in Section 4; Section 5 discusses solutions corresponding to
certain critical values of the scalar field, while Section 6 is devoted to the
possibility of the universe tunneling from Minkowski space. Finally, Section
7 contains a discussion and the conclusions.

2. THE EQUATIONS AND THEIR DIMENSIONAL REDUCTION

We consider a flat FLRW spacetime with line element

ds2 5 dt2 2 a2(t)F dr 2

1 2 kr 2 1 r 2(du2 1 sin2u dw2)G (2.1)

in comoving coordinates (t, r, u, w), where k 5 0, 61 is the curvature index.
It is assumed that the source of gravity is a scalar field c with a nonminimal
coupling to gravity. The theory is described by the action

S 5
1
2 # d 4x !2g12

R[g]
k

1 gmncmcn 2 2V(c) 1 jRc22 (2.2)

where Fm [ F/xm, k [ 8pG, with G being Newton’s constant, V(c) is an
arbitrary self-interaction potential, and j is the arbitrary coupling constant
of the scalar field c to the Ricci curvature R of spacetime. The potential
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V(c) includes a possible cosmological constant as an additive term, which
is written as 29L for economy of notations and for ease of comparison with
ref. 27. We will use the dimensionless parameters

a [ km2/6, v [ k2L (2.3)

where m is the mass of the scalar field c. For example, the potential describing
a massive scalar field with a quartic self-interaction in the presence of a
cosmological constant (which was extensively studied in ref. 27) reads, in
these notations,

V(c) 5
3a
k

c2 2
V
4

c4 2
9v
k2 (2.4)

We shall frequently refer to this particular potential for the sake of illustration.
The notations and conventions on the metric and the Riemann and Ricci

tensors are those or ref. 28 (cf. also ref. 27). In this paper the discussion is
limited to spatially flat FLRW spaces, hence k 5 0 in Eq. (2.1). The field
equations derived from the action (2.2) are the Klein–Gordon equation

c̈ 1 3Hċ 2 jRc 1
dV
dc

5 0 (2.5)

and the Einstein equations

Emn [ Rmn 2 1–2 gmnR 5 kTmn (2.6)

with the Hubble function H 5 ȧ/a (an overdot denotes differentiation with
respect to the comoving time t), and Tmn is the scalar field stress-energy
tensor. Let us underline that, in this approach, Tmn refers to the expression
obtained by varying the action (2.2), including the whole contribution due
to the nonminimally coupled part. Explicitly,

Tmn 5 cmcn 2 j(¹m¹n 2 gmn▫)(c2) 1 jEmnc2

2 1–2 gmn(caca 2 2V ) (2.7)

where ¹m and ▫ represent, respectively, the covariant derivative and d’Alem-
bert’s operator. This approach is in contrast to the widespread attitude encoun-
tered in the literature, which consists in considering the term jEmnc2 as a
contribution to the geometric left-hand side of the Einstein equations, thus
giving rise to the “effective” Einstein equations

Emn 5 keff(t)tmn (2.8)
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where

keff(t) 5
k

1 2 kjc2 (2.9)

is an effective, time-dependent, gravitational coupling. The energy density
and the pressure of the scalar field are then derived from the (nonconserved)
truncated energy-momentum tmn.

This procedure is both mathematically and physically questionable or,
at best, restrictive. The first reason is that the division of the Einstein equations
by the factor (1 2 kjc2) introduces an artificial “barrier” and therefore a
loss of generality. Indeed, the solutions that cross through the values c 5

61/!kj (for j . 0) are missed. As a consequence, the richness of the
nonminimally coupled solutions is partially lost. We will indeed show that
there are well-behaved dynamical solutions of the Klein–Gordon equation
(2.5) and of the Einstein equations (2.6) that lie at all times on this “critical
barrier.” It appears, moreover, that these critical solutions play an unexpected
dynamical role: some of them spontaneously enter into, and exit from, de
Sitter regimes, even in the absence of a cosmological constant.

A supplementary reason which renders the effective reformulation of
the Einstein equations suspect follows from the nonconservative character
of the truncated energy-momentum tensor tmn in Eq. (2.8), which leads to
inconsistencies such as the nonphysical negative energy densities of the scalar
field. These situations are automatically avoided by the dynamical solutions
of Eqs. (2.5) and (2.6). The latter can be written as the trace of the Einstein
equations (2.6) and their time–time component (i.e., the Hamiltonian or
energy constraint), respectively,

R 5 26(Ḣ 1 2H 2) 5 2k(s 2 3p) (2.10)

3H 2 5 ks (2.11)

where s and p are, respectively, the energy density and pressure of the scalar
field as deduced from the energy-momentum tensor (2.7),

s 5
ċ2

2
1 3jH 2c2 1 3jHt(c2) 1 V(c) (2.12)

p 5
ċ2

2
2 j[2Ht(c2) 1 2

tt(c2)] 2 j(2Ḣ 1 3H 2)c2 2 V(c) (2.13)

We stress the fact that our approach is not to prescribe a priori an equation
of state for the scalar field c, but rather to determine it self-consistently
together with the solutions of Eqs. (2.5) and (2.10)–(2.13). Note that the
energy density s associated with these solutions is automatically nonnegative.
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The second derivative c̈ can be eliminated from the expression (2.13)
of the pressure by using the Klein–Gordon equation (2.5), obtaining

p 5 11
2

2 2j2ċ2 1 jHt(c2) 1 2j(6j 2 1)Ḣc2

1 3j(8j 2 1)H 2c2 1 2jc
dV
dc

2 V(c) (2.14)

The trace s 2 3p of the energy-momentum tensor, which is of primary
importance in the present considerations, is derived from Eqs. (2.12) and
(2.13),

s 2 3p 5 2ċ2 1 12jH 2c2 1 9jHt(c2) 1 3j2
tt(c2) 1 6jḢc2 1 4V(c)

5 2ċ2 1 9jHt(c2) 1 3j2
tt(c2) 2 jRc2 1 4V(c) (2.15)

or, with the help of Eq. (2.14) (the expression of the pressure modulo the
Klein–Gordon equation)

s 2 3p 5 ċ2(6j 2 1) 1 12jH 2c2(1 2 6j) 1 6j(1 2 6j)Ḣc2

2 6jc
dV
dc

1 4V(c)

5 (6j 2 1)(ċ2 1 jRc2) 2 6jc
dV
dc

1 4V(c) (2.16)

In the particular case of conformal coupling j 5 1/6, this leads to the
simple expression

s 2 3p 5 4V(c) 2 c
dV
dc

(2.17)

which vanishes for the conformally invariant quartic self-interaction V(c) 5
lc4 [and, of course, if V(c) 5 0]. This invariance property lies at the heart
of the central role played by this interaction in the exact integrability properties
of the dynamical equations (2.5), (2.10), and (2.11) in their conformally
rescaled form; ref. 26 is devoted to this topic.

The energy conservation equation can be written in terms of these
variables as

ṡ 1 3H(s 1 p) 5 0 (2.18)

Thanks to the expressions (2.16) and (2.12), the Einstein equations (2.10)
and (2.11) become, explicitly,
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26Ḣ[1 1 j(6j 2 1)kc2] 1 k(6j 2 1)ċ2 2 12H 2

1 12j(1 2 6j)kH 2c2 1 4kV 2 6kjc
dV
dc

5 0 (2.19)

2
k
2

ċ2 2 6jkHcċ 1 3H 2 2 3kjH 2c2 2 kV(c) 5 0 (2.20)

The dynamical equations are henceforth reduced to a closed two-dimensional
first-order system for the variables H and c, as they only contain H, Ḣ, c,
and ċ. The Hubble function H and the scalar field c thus appear as natural
variables of the dynamical problem; this follows from the spatially flat (k 5
0) character of the metric (2.1) considered here because the variables a and
ȧ always appear in the combination ȧ/a 5 H.

The dimensional reduction has an essential fallout on the unfolding of
the dynamics, as the minimal dimensionality for a first-order system to exhibit
chaotic behavior is three [29]. Therefore:

• A spatially flat (k 5 0) FLRW cosmological model with a scalar
field source cannot exhibit chaotic behavior for arbitrary nonminimal
coupling j and potential V (c).

Let us underline that the above-mentioned dimensional reduction is only
possible in the spatially flat case. A priori, nothing forbids the appearance
of chaotic behavior in the k 5 61 cases, and this was indeed reported in the
literature [24, 30]. But then, how to understand the chaotic regimes that have
also been reported in the literature [24, 25] for the spatially flat (k 5 0) case
? It appears that these situations unavoidably correspond to apparent chaotic
regimes due to an unexpected and strange topological structure of the phase
space of the dynamical solutions.

3. TOPOLOGY OF THE PHASE SPACE

This topology is clearly exhibited by solving Eqs. (2.19) and (2.20) in
terms of Ḣ and ċ, respectively, which leads to the autonomous system

ċ 5 26jHc 6
1

2k
!G(H, c) (3.1)

Ḣ 5
P1(H, c)

P2(c)
(3.2)
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where

G(H, c) 5 8k2F3H 2

k
2 V(c) 1 3j(6j 2 1)H 2c2G

5 8k2[s 2 V(c) 1 3j(6j 2 1)H 2c2] (3.3)

P1(H, c) 5 3(2j 2 1)H 2 1 3j(6j 2 1)(4j 2 1)kH 2c2

7 j(6j 2 1)Hc!G(H, c) 1 (1 2 2j)kV(c) 2 kjc
dV
dc

(3.4)

P2(c) 5 1 1 kj(6j 2 1)c2 (3.5)

We will see later that the function G(H, c) plays a central role in the organiza-
tion of the topological structure of the phase space of the dynamical solutions.

An inspection of the above expressions shows that some obvious dynami-
cal restrictions are expected on the line P2(c) 5 0 for 0 , j , 1/6; however,
this is obviously not the case for both minimal (j 5 0) and conformal (j 5
1/6) couplings. This fact underlines a peculiarity of minimal and confor-
mal couplings.

As is clear from Eqs. (3.1), (3.2), and (3.4), the vector field (Ḣ, ċ) of
the system is not defined at the points where G(H, c) , 0. These points
belong to regions of the (H, c) plane which are dynamically forbidden, i.e.,
unaccessible to the orbits of the solutions of the system. The boundary 1
defined in the (H, c) plane by

1 [ {(H, c): G(H, c) 5 0} (3.6)

may or may not exist according to the form of the potential V(c); this curve
appears as the borderline between dynamically allowed [G(H, c) $ 0] and
forbidden [G(H, c) , 0] regions in the (H, c) plane. For illustration, we
show in Fig. 1 various possible situations associated with the parameters of
the particular potential (2.4).

The boundary 1 induces behaviors of the solutions in the phase space
which are unusual for two-dimensional dynamical systems and result in
significant changes in comparison to the case in which the boundary is absent.

At this stage some considerations must be made on the reduction process
which has been followed. We start from the set (2.5), (2.10), and (2.11)
constituted by the Klein–Gordon equation, the trace, and the time–time
component of the Einstein equations. The latter plays the role of a constraint
between the variables c, ċ, and H, while the Klein–Gordon equation and
the Einstein trace equation are both of second or lower order in c and a.
The phase space associated with this dynamical system is a three-dimensional
manifold defined by the energy constraint in the four-dimensional space
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Fig. 1. Physical (I) and unphysical (II) regions in the (H, c) plane for j 5 0, 1/6 and the
potential (2.4). The vertical axis corresponds to c 5 0, the horizontal axis to H 5 0. (a) V .
0, a2 2 vV . 0, v . 0. (b) V . 0, v 5 0. (c) V . 0, a2 2 vV . 0, v , 0. (d) V , 0,
a2 2 vV . 0, v $ 0. (e) V , 0, a2 2 vV . 0, v , 0. (f) V 5 0, v . 0. (g) V 5 0, v 5
0. (h) V 5 0, v , 0.

spanned by c, ċ, a, and ȧ. By introducing the Hubble variable H 5 ȧ/a we
obtain a reduction to a two-dimensional system for the variables c(t) and
H(t) which are therefore more “natural” variables for our model; however
this result needs a careful analysis. Indeed, we solve the implicit system
(2.19) and (2.20) to obtain the explicit system (3.1) and (3.2). A glance at
the latter shows that it is not unique: by choosing different signs in Eqs. (3.1)
and (3.2) one obtains two different systems of differential equations. What
is the meaning of this nonuniqueness?

As discussed before, at any point (H, c) not belonging to the curve 1,
whatever the chosen sign, the system (2.19) and (2.20) implies the set (3.1)
and (3.2). Both systems are equivalent if both signs are considered. However,
a complete set of initial conditions for the system (2.5), (2.10), and (2.11)
is specified by c(0), ċ(0), and H(0), while for the system (2.19) and (2.20)
one only needs the information on c(0) and H(0); one derives the value of
ċ(0) from Eq. (3.1),

ct(0) 5 26jH(0)c(0) 6
1

2k
!G(H(0), c(0)) (3.7)



Nonminimally Coupled Scalar Field Cosmology 1913

The geometric interpretation of the previous considerations is the following:
the accessible phase space is made of two two-dimensional sheets joining
on the boundary 1 (when the latter is present). To specify an initial condition
one needs to provide the values c(0) and H(0) as well as the sign in expression
(3.7), which is the same as choosing in which sheet the solution lies. The
phase space topology can be said to be R2 3 {1, 2} with holes corresponding
to the regions where G , 0. In other words, the solution (H, c) of Eqs. (3.1)
and (3.2) is the projection on the (H, c) plane of the original solution living
on the two-dimensional zero-energy submanifold of the original phase space
(H, c, ċ). This solution is recovered by lifting (positive sign) or lowering
(negative sign) the projection using Eqs. (3.1) and (3.2) at each point of the
(H, c) plane. The two possible signs in Eq. (3.1) are related to the reversibility
of the physical processes described by such equations. Reversibility is guaran-
teed in Eqs. (3.1) and (3.2) in the following way: if (H(t), c(t)) is a solution
of the system (3.1) and (3.2) with the positive (negative) sign, then (2H(2t),
c(2t)) is a solution of the same system with the reversed sign.

This rather involved phase-space structure may be the cause of the
apparent chaotic regimes that have been reported for k 5 0 (flat spatial
sections) [25]. Indeed, numerical integration cannot exactly distinguish points
belonging to the allowed region from points located in the “nearby” forbidden
region. Furthermore, the discretization of the dynamics generally tends to
worsen these discrepancies; it is therefore expected that these pseudochaotic
regimes manifest themselves in neighborhoods of the boundary 1. This issue
is presently under investigation and will be reported upon in a forthcom-
ing publication.

In order comprehensively to explore the topological organization of the
orbits of the dynamical solutions and the central importance of the function
G(H, c), one should keep in mind that the dynamically available phase space
is a two-dimensional surface in the original three-dimensional space (H, c,
ċ). The topology of this surface depends on the potential V(c) and (crucially)
on the existence of the boundary 1.

The surface is connected without holes (i.e., dynamically forbidden
regions) when G is nonnegative, that is, when the boundary 1 does not exist.
On the contrary, when the potential V(c) is such that G has negative sectors,
the surface exhibits holes or may even be nonconnected (see Fig. 1 for
examples). Equations (3.1) and (3.2), along with the choice of the positive
or negative sign, yield a complete description of the orbits on that surface
from their projection in the (H, c) plane. These projected orbits are, of course,
restricted by the possible presence of negativity regions for G, bounded by
the curve 1. Indeed, these orbits are entirely confined to the positivity
region of the function G and therefore never cross the boundary 1 toward
a dynamically forbidden region G , 0 in the (H, c) plane. An important
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question is the following: does the boundary 1 itself belong to the forbidden
or to the allowed region or, in other words, are the orbits allowed to touch
1? A mathematical rephrasing of the question is: does the expression given
by Eq. (3.1) satisfy the Klein–Gordon equation (2.5) on the G 5 0 boundary?
The solution of the problem depends on the behavior of the function G(H, c)
in a neighborhood of G 5 0, hence on Ġ evaluated at G 5 0, where

Ġ 5
G
H

Ḣ 1
G
c

ċ (3.8)

By combining Eqs. (3.8) and (3.1)–(3.3) one obtains

Ġ 5 624j(1 2 6j)kH 2c!G 2 1211
2

2 j2HG 7 4k!G
dV
dc

(3.9)

It follows from Eq. (3.9) that

Ġ(H, c) 5 0 on the boundary 1 (3.10)

and that Ġ/!G is well behaved on 1,

Ġ

!G
Z
G50

5 624kj(1 2 6j)H 2c 7 4k
dV
dc

(3.11)

From Eq. (3.1) one deduces that

c̈ 5 26jt(Hc) 6
1

4k
Ġ

!G
(3.12)

Then it immediately follows from Eqs. (3.1), (3.2), (3.11), and (3.12) that
the Klein– Gordon equation (2.5) is satisfied on the boundary 1. The latter
then belongs to the allowed region and consequently may be reached by the
orbits of the dynamical solutions. Once this happens, the orbits of such
solutions are repelled toward the allowed positivity region of G(H, c) (except
for the case in which the contact point is a fixed point, as clarified below).
In other words, these solutions cannot be trapped by the boundary 1 and
propagate on it, as explained below.

The orbits of these “bouncing” solutions on 1, reconstructed from their
projections on the (H, c) plane into the original two-dimensional phase space
surface, originate from one sheet, touch the curve 1, and afterward evolve
on the other sheet of the two-dimensional surface. This explains the possible
apparent pathology (i.e., the nonuniqueness of the solutions) of the phase
portrait in the neighborhood of 1, since some projected orbits may then
cross each other. However, these crossing orbits are only projections of
(noncrossing) curves transiting from one sheet to the other.
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The constraint G 5 0 imposed along the orbit of a dynamical solution
is only compatible with Eqs. (2.5), (3.1), and (3.2) if this solution is a fixed
point of the dynamical system, namely

ċ 5 0 (3.13)

Ḣ 5 0 (3.14)

Hence, only fixed points of the dynamical system may possibly live on the
boundary 1; but this is a necessary and sufficient condition only for minimal
coupling. Indeed it follows from Eqs. (3.1) and (3.2)–(3.5) that, for j 5 0,

ċ 5 6
1

2k
!G (3.15)

Ḣ 5 2
G
8k

(3.16)

and all the fixed points are located on the boundary 1 in this case. This is
not the case for arbitrary nonminimal coupling, as we shall show now.

4. FIXED POINTS AND OTHER SOLUTIONS

Let us denote a fixed point, solution of Eqs. (3.13) and (3.14), by (H0,
c0). The Klein–Gordon equation (2.5) then leads to

12jH 2
0c0 1 V 80 5 0 (4.1)

where V 80 [ dV/dc.c0.
(i) If c0 5 0 or j 5 0 (or both), then Eq. (4.1) implies V 80 5 0. The

corresponding value of H0 is then deduced from Eqs. (2.11) and (2.12), which
lead to

H 2
0 5 kV(f0)/3 (4.2)

This fixed point obviously exists only if V(c0) $ 0. In the particular case of
the example potential (2.4) the fixed point (6!kV(c0)/3, 0) reduces to the
purely geometric de Sitter fixed point (as defined in ref. 27), due only to the
presence of a cosmological constant.

(ii) If c0 Þ 0 (and j Þ 0), then it follows from Eq. (4.1) that

H 2
0 5 2

1
12jc0

V 80 (4.3)

which requires the positivity of the right-hand side. The corresponding value
of c0 is then deduced from either the energy equation (2.11) or the trace
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equation (2.10); note that these equations are identical in this case. Indeed,
it follows from both of them that

Ḣ 5 2
k
2

(s 1 p) (4.4)

and consequently the de Sitter equation of state

s 1 p 5 0 (4.5)

follows from the condition Ḣ 5 0. This implies, in turn, that the trace equation
(2.10) becomes

R 5 26(Ḣ 1 2H 2) 5 212H 2 5 2k(s 2 3p) 5 24ks (4.6)

thus yielding

ks 5 3H 2 (4.7)

which is precisely the energy equation (2.11). The latter takes the form

s(c0) 5 3jH 2
0c2

0 1 V(c0) 5 3H 2
0 /k (4.8)

By combining Eqs. (4.8) and (4.3), one then obtains

4kjc0V(c0) 1 V 80(1 2 kjc2
0) 5 0 (4.9)

The roots of this algebraic equation are the fixed-point values of c0 associated
with the potential V(c) and the nonminimal coupling constant j.

In the particular case of the potential (2.4), Eqs. (4.3) and (4.9) lead to

H 2 5
3(a2 2 Vv)
k(V 2 6ja)

(4.10)

c2 5
6(a 2 6jv)
k(V 2 6ja)

(4.11)

provided that V Þ 6aj. The singular situation V 5 6aj (discussed in ref.
27) corresponds precisely to the de Sitter integrability condition a 5 v 5
V and j 5 1/6 of ref. 26.

The expressions (4.10) and (4.11) allow one to answer the question
of whether a de Sitter self-consistent classical solution can reproduce the
semiclassical de Sitter regime. The latter was obtained [11] for a massive
quantum scalar field conformally coupled to gravitation without any addi-
tional self-interaction or cosmological constant. Here, this situation corres-
ponds to a Þ 0 and v 5 V 5 0, which leads to
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H 2 5 2
a

2kj
(4.12)

c2 5 2
1
kj

(4.13)

Obviously H and c only exist if j , 0. Hence, the classical solution mimicking
the semiclassical one requires a shift of the nonminimal coupling constant j
from its semiclassical conformal value 1/6 to j , 0.

One recovers the late-time mild inflationary scenario of ref. 20 which
corresponds to short periods of exponential expansion of the universe inter-
rupting the present matter-dominated era. The scenario was introduced to
overcome the age of the universe problem and the problem of the discrepancy
between locally and globally measured values of the Hubble parameter [20].
Late-time mild inflation was achieved by assuming that the dark matter is
dominated by a nonminimally coupled scalar field with V 5 v 5 0, a .
0, j , 0, and .j. À 1 (strong coupling), and corresponds to the solution [20]

(H, c) 5 1! a
2.j.k

, 6
1

!k.j.2 (4.14)

This solution is obtained from Eqs. (4.10) and (4.11) for v 5 V 5 0 and
j , 0 and is unstable, a feature that is desirable in order to stop the exponential
expansion of the universe soon after it starts [20]. When .j. À 1, the space-
time given by this solution exhibits pathologies that make it physically unac-
ceptable, as explained in detail in ref. 31. The latter paper connects the physics
of a nonminimally coupled scalar field to the study of tails of scalar waves
in curved spaces, which can have significant implications for cosmology.

By combining Eqs. (4.3) and (4.9) one obtains the corresponding value
of H0,

H 2
0 5

kV(c0)
3(1 2 kjc2

0)
(4.15)

together with the condition

kjc2
0 Þ 1 (4.16)

The case

kjc2
0 5 1, c0 5 cc [ 6

1

!kj
(4.17)

where cc denotes the critical value of the field c (for positive values of j),
will later appear to play a crucial role in the unfolding of a self-consistent
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dynamical behavior by endowing the latter with unexpected “critical field
solution.” Before discussing this issue, we note that there might still exist a
“usual” fixed point associated with the critical field value cc. It follows from
Eq. (4.9) that

Vc [ V(cc) 5 0 (4.18)

The critical field value cc is therefore a fixed point if the potential vanishes
there, and the corresponding value of H0 is derived from Eq. (4.3),

H 2
0 5 2

1
12jcc

V 8c 5 7
1
12 !k

j
V 8c (4.19)

where the 6 signs refer to the two values of cc in Eq. (4.17).
Let us now come back to the problem previously raised on the possible

location of the fixed points on the boundary 1. Precisely, what are the
conditions for a fixed point to be located on 1 in the case of arbitrary
nonminimal coupling j? These conditions are obtained by combining the
relations (4.1) and (4.9) for the fixed points (H0, c0) with the equation for
the boundary 1; this leads to the simple constraint

c0V 80 5 0 (4.20)

this is satisfied, e.g., if c0 Þ 0 and the potential V(c) is stationary at that
point, i.e.,

c0 Þ 0, V 80 5 0 (4.21)

But Eq. (4.21) combined with Eq. (4.9) implies that

V(c0) 5 0 (4.22)

Moreover, the value of H0 given by the Klein–Gordon equation (4.1) is

H0 5 0 (4.23)

This result also follows from the conditions G 5 0 and V(c0) 5 0. In the
terminology of ref. 27 this fixed point is therefore a nontrivial Minkowski
space (“nontrivial” because it is realized with a nontrivial potential V(c) and
a nonvanishing value c0 of the scalar field). Referring once more to the
example case of the potential (2.4), this situation is realized when the three
parameters a, V , and v satisfy the constraint a2 5 vV , and the corresponding
fixed point is then given by

(H0, c0) 5 10, 6!6a
kV2 (4.24)

Another realization of the constraint (4.20) is obtained with
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c0 5 0 (4.25)

and the only information delivered by the Klein–Gordon equation is then
V 80 5 0. In this case the value of H0 is directly deduced from Eqs. (2.11)
and (2.12),

H 2
0 5

k
3

V(0) (4.26)

with the condition V(0) $ 0. This fixed point

(H0, c0) 5 16!kV(0)
3

, 02 (4.27)

represents, once more in the terminology of ref. 27, a geometric de Sitter
fixed point. This is realized, e.g., when the potential reduces to a pure
cosmological constant, as in ref. 27.

In the preceding discussion concerning the fixed points of the dynamical
system, we saw the emergence of special values of the scalar field [see Eqs.
(4.9) and (4.15)], namely the critical values cc given by Eq. (4.17). Why do
such special values appear in the discussion, and what is their physical and
mathematical meaning? It follows from Eqs. (2.12) and (2.13) that the energy
density s and pressure p associated to a constant scalar field c0 obey the
relation

s 1 p 5 22jc2
0Ḣ (4.28)

By combining this equation with Eq. (4.4) one obtains

Ḣ(1 2 kjc2
0) 5 0 (4.29)

from which one deduces that Ḣ 5 0 when kjc2
0 Þ 1 (i.e., c Þ cc); this in

turn yields the fixed points already discussed. On the contrary, the special
case c 5 cc leads to two possibilities: the first one corresponds to the
simultaneous vanishing of the two terms in the left-hand side of Eq. (4.29)
and corresponds to the fixed point (4.19) located at the critical value of the
scalar field. The second realization of the constraint (4.29) corresponds to
the unexpected dynamical situation in which Ḣ Þ 0, hence to a time-dependent
Hubble function H(t) associated with a constant value cc of the scalar field.
How is this possibility, offerred a priori by the constraint (4.29), realized
dynamically? In other words, does the set of dynamical equations (2.5),
(2.10), and (2.11) offer such an unusual solution, and under which conditions?

The Klein–Gordon equation (2.5) leads to

2jRcc 1 V 8c 5 0 (4.30)

where V 8c [ dV/dc.cc, and
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R 5 26(Ḣ 1 2H 2) 5
1

jcc
V 8c (4.31)

is therefore a constant. The time-dependent Hubble function H(t) satisfies a
Riccati equation characterizing this constant-curvature space,

Ḣ 1 2H 2 5 2
1

6jcc
V 8c 5 2

R
6

(4.32)

The trace equation (2.10) has then to be satisfied together with the expression
of the trace (2.15), which reduces to

s 2 3p 5 2jRc2
c 1 4Vc (4.33)

Hence, following Eq. (2.10),

R 5 2k(s 2 3p) 5 kjc2
cR 2 4kVc (4.34)

Since kjc2
c 5 1 by definition, this equation is obviously satisfied only if

Vc 5 0 (4.35)

This condition will be discussed later.
Finally, the energy density derived from from Eq. (2.12) is, in this case,

s 5 3jc2
cH 2 1 V(cc) (4.36)

Equations (4.36), (4.17), and (4.35) yield

s 5 3H 2/k (4.37)

which coincides with the energy constraint (2.11). A last, but crucial, point
to be checked is whether these critical (H(t), cc) are physically dynamical
solutions and belong to the allowed region of the (H, c) phase space for any
potential V(c) and nonminimal coupling j. The function G(H, c) given by
Eq. (3.3), when combined with Eqs. (4.17) and (4.35), becomes

G(H, cc) 5 144jkH 2 (4.38)

which is nonnegative for any positive j (the entire range of values of j for
which the critical value cc is defined). The critical solutions H(t) are therefore
entirely confined to the allowed dynamical region. Moreover, following Eq.
(4.38), these solutions are only entitled to “touch” the boundary 1 at the
points where H(t) 5 0, hence on the c axis in the (H, c) plane. The orbits
of the critical solutions are lines parallel to the H axis and crossing the c
axis at the value c 5 cc.

Before discussing explicitly the behavior of these critical solutions, as
deduced from Eq. (4.32), we emphasize several of their generic aspects. The
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first one refers to the universality of these solutions, in the following sense:
there are only three critical solutions H(t), according to whether the right-
hand side of Eq. (4.32) is positive, zero, or negative. This depends, in turn,
only on the sign of the expression V 8c /cc, without reference to other features
of the potential V(c), and for any positive value of the nonminimal coupling
constant. In addition, the two specifications of the critical values cc given
by (4.17) and (4.35) amplify their universality character for the following
reasons:

(i) If a given potential V(c) vanishes at some value c0 of the scalar field
c, one may adjust the nonminimal coupling constant j to the value j0 5
(kc2

0)21. This promotes the value c0 to the critical one cc associated with
this potential V(c) in the presence of the nonminimal coupling j0.

(ii) If a given potential V(c) does not possess any zeros, one may “shift”
V(c) by adding a constant term (a cosmological constant) such that the newly
defined potential vanishes at a prescribed value c0. The latter is then promoted
to the critical value associated with this potential by adjusting the nonminimal
coupling parameter j to the value j0 5 (kc2

0)21, as described in (i).
There are situations in theoretical physics and in cosmology in which

j is a running coupling. The study of asymptotically free theories in an
external gravitational field shows a scale-dependent coupling parameter j(e).
In refs. 32 and 33 it was shown that asymptotically free GUTs have a j
depending on a renormalization group parameter e, and that j(e) converges
to 1/6, `, or to any initial condition j0 as e → 1` (this limit corresponds
to strong curvature conditions and to the early universe), depending on the
gauge group and on the matter content of the theory. In ref. 34 it was also
obtained that .j(e). → 1` in SU(5) GUTs. Similar results were derived in
finite GUTs, with the convergence of j to its asymptotic value being much
faster [32, 33]. An exact renormalization group study of the lf4 theory shows
that j 5 1/6 is a stable infrared fixed point [35]. The running of the coupling
j was employed in cosmology before [36, 18, 19].

We conjecture that this universality confers on these self-consistent
critical solutions a universal physical role in the unfolding of cosmological
nonminimal, self-consistent scalar dynamics beyond the peculiarities of the
Lagrangian in the action (2.2). As an example, consider the exact solution
(see Section 5 for its derivation)

a 5 a0 cosh1/2[!2C(t 2 t0)], c 5 cc (4.39)

H 5 !C
2

tanh[!2C(t 2 t0)] (4.40)

which is of special physical interest since it describes a nonsingular cosmology
which spontaneously emerges from a contracting asymptotic (t → 2`) de
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Sitter regime, contracts to a minimum nonvanishing size, and then gracefully
reenters into an asymptotic expanding de Sitter regime (for t → 1`). The
presence or absence of a cosmological constant in order to achieve this
dynamical behavior is unimportant.

In view of the universality of this behavior (in the sense described
above), we emphasize the fact that this dynamical evolution is inherent to a
wide class of potentials and nonminimal couplings. Ironically, these critical
solutions are precisely the ones which are often missed or at least ignored
in the literature due to the misleading and restrictive use of the effective
gravitational constant given by Eq. (2.9). On the contrary, not only does our
self-consistent approach include these critical field solutions, it also raises
them to an unexpected status.

It might erroneously be deduced from the considerations about the fixed
points that c 5 const is a necessary condition for a dynamical solution to
be a de Sitter one. Indeed, by contrast with the minimally coupled case (j
5 0) in which this property holds, the nonminimal case admits nontrivial
dynamical realizations of the fixed-point constraints [37]

H 5 const (4.41)

c 5 c(t) (4.42)

According to Eqs. (3.1)–(3.3), this corresponds to

ċ 5 26jHc 6 !G(H, c; j; V(c)) (4.43)

P1(H, c; j; V(c)) 5 0 (4.44)

5. CRITICAL FIELD SOLUTIONS

These solutions correspond to constant Ricci curvature. Since R 5 26(Ḣ
1 2H 2) in a spatially flat FLRW universe, the condition R 5 const is
equivalent to

Ḣ 1 2H 2 5 C (5.1)

where C 5 2R/6 is a constant. Equation (2.10) then yields

p 5
s
3

1 p0 5
s
3

1 1 R
3k2 (5.2)

One could continue by noticing that Eq. (5.1) is a Riccati equation, and by
applying the standard methods for its solutions, but we prefer to proceed
as follows.

For C 5 0, Eq. (5.1) is immediately integrated to obtain the Minkowski
space corresponding to H 5 0 or the radiation solution
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H 5
1

2(t 2 t0)
(5.3)

where t0 is an integration constant, and

a 5 a0!t 2 t0 (5.4)

For C . 0 one has

Ḣ
1 2 2H 2/C

5 C (5.5)

which leads to

# dx
1 2 x2 5 !2C(t 2 t0) (5.6)

where x [ !2/CH. Since the value of the integral in Eq. (5.6) is arctgh x if
x2 . 1 and ln[((1 1 x)/(1 2 x))1/2] if x2 , 1 one obtains, after elementary
calculations,

H 5 !C
2

tanh[!2C(t 2 t0)] (5.7)

for both .H. . !C/2 and .H. , !C/2. Equation (5.7) is incompatible with
the first limit on .H. and therefore there is no solution for .H. . !C/2. The
scale factor corresponding to the solution for .H. , !C/2 is

a 5 a0 cosh1/2[!2C(t 2 t0)] (5.8)

representing a nonsingular universe which contracts from an asymptotic pure
de Sitter regime (t → 2`), bounces at a minimum size a0 (t 5 t0), and
reexpands to a pure de Sitter regime (t → 1`).

The cases H 5 6!C/2 not included in Eq. (5.5) correspond to the de
Sitter solutions

a 5 a0 expF6!C
2

(t 2 t0)G 1H 5 6!C
22 (5.9)

The solution (5.9) with c 5 6cc corresponds to the vanishing of both Ḣ
and (1 2 kjc2) in Eq. (4.29).

For C , 0 one reduces Eq. (5.1) to

# dx
1 1 x2 5 2!2.C.(t 2 t0) (5.10)

(where x [ !2/.C.H ), which is immediately integrated,



1924 Gunzig et al.

H 5 2!.C.
2

tan[!2.C.(t 2 t0)] (5.11)

and finally

a 5 a0 cos1/2[!2.C.(t 2 t0)] (5.12)

which represents a universe expanding from a big bang singularity to a
maximum size and then recollapsing.

The structure of the equation of state (5.2) is remarkable as its “quasi-
radiation-like” form hides a wide class of behaviors, which are apparent when
one rewrites Eq. (5.2) with the expression (2.10) of R,

p 5
s
3

2 2
Ḣ
k

2 4
H 2

k
5

s
3

2 4
s
3

2 2
Ḣ
k

5 2s 2 2
Ḣ
k

(5.13)

The equation of state is then written in a “quasi-de Sitter-like” form, and it
is clear how it may continuously evolve to a pure de Sitter one, reached
when Ḣ 5 0. This property of the critical field solutions lies behind the fact
that they can spontaneously enter or exit an inflationary de Sitter regime. Of
the three solutions, this property is enjoyed by (5.7), which exhibits a peculiar-
ity: the (time-dependent) pressure associated with its evolution is perma-
nently negative:

s 1 p # 0 (5.14)

This feature follows from Eq. (5.13) and from the fact that, according to
Eq. (5.7),

Ḣ $ 0 (5.15)

The equality in Eq. (5.14) (hence the vacuum equation of state and the de
Sitter regime) is reached when Ḣ 5 0, which happens as t → 6`, when
H(t) reaches its extremal values

HC 5 6!C
2

5 6!.R.
12

5 6! .V 8c.
12jcc

(5.16)

In the purely classical context, this negative pressure drives the creation
of the scalar field energy density s. Since this solution is simultaneously
characterized by Vc 5 0 [see Eq. (4.35)] and c 5 const 5 cc , the energy
density s receives no contributions from the kinetic energy density of the
scalar field, nor from the potential energy density V(c). This fact naturally
lends itself to the interpretation of the variation of s as being solely due to
the change in the number of “quanta” of the scalar field c, independently of
the precise definition of quanta. Hence, this solution represents a purely
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Fig. 2. The general shape of the potentional V(c) which engenders the critical solution (5.7).
The requirements are V(cc) 5 0 and dV/dc.cc

[ V l
c , 0.

classical analog of the semiclassical self-consistent cooperative mechanism
[11] in which the spacetime evolution involves scalar particle production (or
annihilation), and their feedback response is precisely the one required to
sustain the evolution.

As we already mentioned, this solution spontaneously passes from an
asymptotic (t → 2`) contracting de Sitter regime to an asymptotic (t →
1`) expanding de Sitter regime with an intermediate (t 5 t0) bounce of the
scale factor corresponding to H(t) passing through the value H 5 0. According
to Eq. (4.38), this happens when the solution (5.7) touches the boundary 1.
It follows from Eqs. (4.18), (4.31) and (5.1) that the general behavior of the
potential V(c) which engenders the critical solution (5.7) is the one described
by Fig. 2. We saw that the orbit of this solution, which is a straight line
parallel to the H axis and crossing the c axis at the point (0, cc), touches
the G 5 0 boundary precisely at that point. According to Eq. (3.3), the
forbidden region G , 0 necessarily corresponds to values c , cc [where
V(c) . Vc]. The boundary 1, being described by an even function of H,
appears therefore as in Fig. 3.
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(a)

(b)

Fig. 3. (a) The general shape of the potential V(c) which produces the configuration depicted
in panel b. (b) The forbidden dynamical region (I ), the allowed region (II ), the boundary 1,
and the orbits of the critical solutions (5.7). The trivial Minkowski fixed point is located at
(0, 0); the four de Sitter fixed points are (6Hc , 6cc).

One can illustrate the situation with the help of the potential (2.4) in
the case of conformal coupling j 5 1/6: the critical solutions cc 5 6!6/k
are realized with this potential when V 5 2a and v 5 0, i.e.,

V(c) 5
3a
k

c2 2
a
2

c4 (5.17)

The function G(H, c) in Eq. (3.3) is

G(H, c) 5 8k2F3H 2

k
2

3a
k

c2 1
a
2

c4G (5.18)

There are five fixed points (H0, c0): one located at the origin and the four
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de Sitter ones (6!3a/k, 6!6/k), the endpoints of the orbits of the two
symmetric critical solutions 6cc , respectively. The values of 6Hc are deduced
from Eqs. (4.32) and (5.18), or from Eq. (4.10) with V 5 2a, v 5 0, and
j 5 1/6. We stress that the configuration of the critical solutions 6Hc(t),
the boundary 1, the forbidden region, as well as the relative location of the
fixed points, are valid for any potential with the shape shown in Fig. 3, hence
independently of the particular form (5.17) given for the sake of illustration.
Only, the value of H 2

c 5 21–2 V 8c /cc 5 21–2 !k/6V 8c depends on V 8c. Therefore,
the discussion of the next section is valid for this entire class of potentials.

As far as the two remaining critical field solutions (5.3) and (5.11) are
concerned, we show that, in contrast to the one discussed above, they are
characterized by positive pressure. Since they satisfy the hypotheses of the
Hawking–Penrose singularity theorems, they both exhibit a big bang singular-
ity. The solution (5.3) corresponds to vanishing Ricci curvature R 5 0 and,
according to Eq. (5.2), is a pure radiation solution. It follows from Eqs. (4.22)
and (4.31) that this solution is realized, among others, by a free [i.e., V(c)
5 0] nonminimally coupled scalar field. Moreover, according to the previous
discussion on the universality of the critical solutions, one may adjust the
nonminimal coupling constant j in such a way that any prescribed value j0

becomes the critical value; in this case the coupling constant j is the only
adjustable parameter.

The solution (5.11) is associated with a positive value of the Ricci
curvature and represents a universe starting from a big bang singularity,
reaching a maximum size, and then recollapsing on the boundary 1.

6. WILD IDEAS

The topological organization of the dynamically forbidden and allowed
regions, the shape of the boundary 1, and the location of the fixed points
associated with the potential (5.17) allow for the intriguing possibility of a
semiclassical “birth of the universe from the Minkowski vacuum.” To avoid
confusion, let us stress that this proposal is distinct from the “birth of the
universe from nothing” advocated in quantum cosmology [38]. In our case
the “primordial cosmological state” does not refer to a state without classical
space and time, as in quantum cosmology, but rather to the Minkowski space
(unstable) fixed point (H, c) 5 (0, 0) located at the origin of the (H, c)
phase space. Hence, our mechanism does not involve quantum tunneling of
the scale factor, but merely the quantum vacuum fluctuations of the scalar
field in the Minkowski classical spacetime background. The scalar field is
thereby promoted to the role of a quantum field in a semiclassical context.
The quantum fluctuations of the scalar field which reach the critical amplitude
cc may be viewed as giving rise to a tunneling in the phase space through
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the classically forbidden region until it reaches the nearest point allowed by
classical dynamics on the c axis, namely (0, cc). By so doing, the cosmological
system (H, c) is carried from an unstable Minkowski fixed point (0, 0)
through a classically forbidden region, toward the classically allowed point
(0, cc). The latter plays the role of initial condition for the subsequent
cosmological evolution, i.e., the unique classical solution emanating from
this point, the critical field solution (5.7). The classical point (0, cc) has a
special cosmological status in this picture: the Hubble function H and the
energy density s of the scalar field vanish there, as well as in their original
(trivial) Minkowski space configuration before tunneling. On the contrary,
the time derivative Ḣ acquires a positive value deduced from Eq. (5.1),

Ḣ 5 2!k
6

V 8c 5
6a
k

. 0 (6.1)

The pressure given by Eq. (5.13) is

p 5 2s 2
12a
k2 5 212

a
k2 , 0 (6.2)

This negative pressure drives the cosmological system out of the c axis,
along the orbit of the critical field solution, and owes its existence to the
nonminimal coupling term 22jḢc2

c in Eq. (2.13).
As a summary, the jump from the primordial vacuum configuration (H,

c) 5 (0, 0) to the nonvacuum one (H, c) 5 (0, cc) manifests itself in a finite
discontinuity of the pressure

Dp 5 212a/k2 (6.3)

or, in other words, in a “push” (H 5 0 and Ḣ . 0) on the time derivative
Ḣ of the Hubble function, which acquires the value (6.1). The latter, which
results from the backreaction of the classical source cc , expresses the accelera-
tion of the cosmological system along the orbit of its critical field solution;
the point representing the universe in the phase space continuously slows
down along its orbit (in the sense that Ḣ decreases), until its “acceleration”
Ḣ vanishes approaching the de Sitter fixed point (Hc , cc) 5
(!3a/k, !6a/k).

It is to be stressed that although these considerations are based on the
particular potential (5.17) for sake of illustration, the mechanism described
accommodates any potential with the shape shown in Fig. 3. The value of
the nonminimal coupling constant j is then adjusted, or reached during the
running of j with the energy scale, as explained before, in such a way that
the zero points of V(c) become the corresponding critical values of the
scalar field.



Nonminimally Coupled Scalar Field Cosmology 1929

7. DISCUSSION AND CONCLUSIONS

The purpose of this paper is the exploration of unknown aspects of
nonminimally coupled scalar field cosmologies; except for the (important)
restriction to spatially flat FLRW spaces, this investigation is very general.
Arbitrary scalar field potentials V(c) and values of the coupling constant j
of the scalar field to gravity are considered. The dynamics of the cosmological
system are investigated in a self-consistent way, i.e., the equation of state of
the cosmic fluid is not imposed a priori, but is rather derived together with
the solution of the coupled Einstein–Klein–Gordon equations. Moreover, the
source term in the right-hand side of the Einstein equations is taken to be
the full, covariantly conserved, energy-momentum tensor of the scalar field
including the geometric contributions originating by the nonminimal coupling
of the scalar. This procedure avoids the questionable introduction of an
effective time-dependent gravitational coupling keff(t) and the corresponding
truncated, nonconserved energy-momentum tensor frequently encountered in
the literature. This approach allows us to explore the richness and subtleties
of the dynamics of nonminimally coupled scalar field cosmology. In different
approaches, and for j . 0, this possibility is lost when keff(t) diverges,
introducing an artificial barrier 6cc to the values that c can assume and,
correspondingly, a loss of generality since the solutions crossing this barrier
are missed. Here it is shown that not only are the missing solutions restored,
but they also play an important role and have an intriguing behavior; all this
is due to the peculiarities of nonminimal coupling.

The exact critical solutions exhibit a universal character, as explained in
Section 5; they are common to a wide class of potentials when the nonminimal
coupling constant is promoted to the role of an adjustable parameter. One of
these self-consistent solutions is of special physical interest, since it describes
a nonsingular universe which spontaneously emerges from a contracting
asymptotic de Sitter regime, contracts to a minimum nonzero size, and then
spontaneously enters into an expanding de Sitter regime. Moreover, this
behavior does not require the presence of a cosmological constant.

Several new properties emerge from the self-consistent dynamical
approach: a dimensional reduction of the dynamical equations, using the
Hubble function H and the scalar field c as variables, leads to the consequence
that the dynamics of a spatially flat FLRW universe cannot exhibit chaotic
behavior, thus settling a longstanding debate [24, 25]. Moreover, an involved
topological structure of the phase space of the solutions appears: according
to the form of the potential V(c), dynamically forbidden regions may exist;
they cannot be reached by the orbits of the solutions, and they are separated
from the regions accessible to the orbits by a boundary 1. The accessible
regions of the phase space consist of two two-dimensional sheets in the (H, c,
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ċ) space joining at the boundary 1 (for the values of V and j for which the
latter exists). The phase space is topologically equivalent to R2 3 {1, 2},
with holes corresponding to the forbidden regions. It is argued that this
peculiar topology may generate apparent chaotic regimes (reported for k 5
0 FLRW spaces [24, 25]) in numerical integrations of the equations of scalar
field cosmology.

Section 6 shows how the results of the previous sections, when extrapo-
lated to the semiclassical framework, may lead to a revival of the issue [11,
38] of the birth of the universe from a primordial unstable Minkowski vacuum.
Quantum vacuum fluctuations of the scalar field might carry the cosmological
system through a classically forbidden region to its boundary 1 and to a
classically allowed region. Specifically, the cosmological system might tunnel
from the initial, classically allowed, empty, Minkowski space (H, c) 5 (0,
0), which is an isolated unstable point of the boundary 1, to a classically
allowed dynamical solution. The latter, which can be the critical solution
discussed above, then acts as an initial data set to evolve the system toward
an asymptotic expanding de Sitter regime. The merit of this semiclassical
mechanism would be to lead continuously (except for a finite discontinuity
in the pressure at the time of emergence of the classical solution) from the
Minkowski space vacuum (at t 5 0) to an asymptotic (at t → 1`) inflationary
de Sitter regime. We emphasize that the nonminimal coupling of the scalar
field is mandatory for the realization of this mechanism.

Finally, we mention that we have already extended most of the results
to the case of non-spatially flat FLRW spaces. These universes do not allow
for the dimensional reduction of the phase space of the solutions to two
dimensions, and therefore chaotic behavior is not a priori prevented. In
principle, chaos could appear due to even slight deviations from spatial
flatness; a quantitative analysis of this topic is ongoing. We are also extending
the previous considerations to the case of several interacting scalar fields;
these results will be presented in a forthcoming publication.
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